2,104 research outputs found

    Revisiting stepwise ocean oxygenation with authigenic barium enrichments in marine mudrocks

    Get PDF
    There are current debates around the extent of global ocean oxygenation, particularly from the late Neoproterozoic to the early Paleozoic, based on analyses of various geochemical indices. We present a temporal trend in excess barium (Ba_{excess}) contents in marine organic-rich mudrocks (ORMs) to provide an independent constraint on global ocean redox evolution. The absence of remarkable Ba_{excess} enrichments in Precambrian (>ca. 541 Ma) ORMs suggests limited authigenic Ba formation in oxygen- and sulfate-deficient oceans. By contrast, in the Paleozoic, particularly the early Cambrian, ORMs are marked by significant Ba_{excess} enrichments, corresponding to substantial increases in the marine sulfate reservoir and oxygenation level. Analogous to modern sediments, the Mesozoic and Cenozoic ORMs exhibit no prominent Ba_{excess} enrichments. We suggest that variations in Ba_{excess} concentrations of ORMs through time are linked to secular changes in the marine dissolved Ba reservoir associated with elevated marine sulfate levels and global ocean oxygenation. Further, unlike Mo, U, and Re abundances, significant Ba_{excess} enrichments in ORMs indicate that the overall ocean oxygenation level in the early Paleozoic was substantially lower than at present

    Efficient Demyristoylase Activity of SIRT2 Revealed by Kinetic and Structural Studies

    Get PDF
    published_or_final_versio

    Photoinduced intramolecular charge transfer of sodium 4-(N,N-dimethylamino)benzenesulfonate

    Get PDF
    A new dual fluorescent N,N-dimethylaniline derivative, sodium 4-(N,N-dimethylamino)benzenesulfonate (SDMAS), is reported. In SDMAS, the electron acceptor is linked to the phenyl ring via a sulfur atom at the para-position of the electron donor. It was found that SDMAS emits dual fluorescence only in highly polar solvent water but not in organic solvents such as formamide, methanol and acetonitrile. In organic solvents only a single-band emission at ca.360 nm was observed in the short wavelength region. The dual fluorescence of SDMAS in water was found at 365 and 475 nm, respectively. Introduction of organic solvent such as ethanol, acetonitrile, and 1,4-dioxane into aqueous solution of SDMAS leads to blue-shift and quenching of the long-wavelength emission. Measurements of steady-state and picosecond time-resolved fluorescence indicate that the long wavelength fluorescence is emitted from a charge transfer (CT) state that is populated from the locally excited (LE) state, with the latter giving off the short wavelength fluorescence. The fact that a highly polar solvent is required to bring out the dual fluorescence suggests that the CT process of SDMAS has a high activation energy (E-a). In supporting this assumption the time-resolved fluorescence measurements give an E-a of 15.35 kJ . mol(-1). It was assumed that the participation of the sulfur atom d-orbital in the conjugation of sulfonate group with phenyl ring and the strong twisting and inverting of the dimethylamino plane relative to the phenyl ring could be the reasons for the high activation energy. A molecular configuration change upon charge transfer in water was suggested for SDMAS based on the thermodynamic data. SDMAS reported here represents the example of the dual fluorescent amine substituted aromatic sulfonate

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    STUDY ON TOTAL LUMINESCENCE SPECTRA - APPLICATION OF THE MONTE-CARLO METHOD TO 3-DIMENSIONAL SYNCHRONOUS FLUORESCENCE SPECTROMETRY

    Get PDF
    Three-dimensional synchronous fluorescence spectrometry (TDSFS, a combination of synchronous fluorescence spectrometry and three-dimensional fluorescence spectrometry) is a new method which has been developed recently. The method has usually been used as an efficient tool to select the best Delta lambda value for synchronous fluorescence spectra. This paper studies the sensitivity of the method, which was not been done in the past. The total fluorescence intensity has been used instead of the conventional single point intensity, calculated by the Monte-Carlo method, as the experimental parameter to determine fluorescein and tryptophan. The sensitivity of the total fluorescence method is nearly one hundred times better than that of the single point method. The new method has been used to simultaneously determine naphthalene, pyrene and perylene successfully. The mechanism of the method has also been studied

    Intramolecular charge transfer dual fluorescence pH sensing using p-dibutylaminobenzoic acid-beta-cyclodextrin inclusion complex

    Get PDF
    The intramolecular charge transfer dual fluorescence of p-dibutylaminobenzoic acid-beta-cyclodextrin inclusion complex showed a substantially higher sensitivity toward aqueous solution pH variation when compared with that of p-dibutylaminobenzoic acid alone, which established a new principle for direct CT fluorescence sensing in aqueous solution by using the CT fluorophore-cyclodextrin inclusion complex

    Induction of fish biomarkers by synthetic-based drilling muds

    Get PDF
    The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs
    corecore